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Abstract One of the most important concepts in production planning is that of the establishment of an
overall, or aggregate production plan. In this paper we consider the problem of establishing an aggregate
prodaction plan for 2 manufacturing plant. A new dynamic model is developed. The basic issue is, given a set
of production demands stated in some common unit, what levels of resources should be provided in each

-period? There has been.a long. history..of academic. research. on. aggreeate. planning,..fesulting. in.many........

mathematical programming models and in a variety of heuristics. However, as the firms attempt to implement
manufactaring pianning and control systems they find serious deficiencies in these models and heuristics. We
attempt to overcome some of these drawbacks with a new approach, utilizing concepts arising in positive

linear systerns” (PLS) theory. Applying recent results concerning PLS we dre able to afalyze conticllability

properties of the simplified model, Controllability is a property of the system that shows its ability to move in
space. It is a fundamental property with direct implications not only in dynamic optimization problems (such
as those arising tn inventory and production control) but also in feedback control problems. We provide a
number of inferesting insights into capacity planaing concerning controllability of the system and at the same
time formulate some probiems regarding controliability of stationary and non-stationary PLS with linear
constraints.,

1. THE MODEL where
Our aim is to meet the pre-specified demand taking D<a<l, 028 < 0gsygl, B
into account decisions concerning when to hire and
fire, how much inventory to hold, when to use ¢ 1s the time period (usually 2 week or a month} and
overtime and undertime, and set-up times. We 7 is the number of time periods in the planning
adopt a common unit of production hours. We now horizon. In the difference equations (1}-(2) the
introduce the model. State variables I, and W, | the decision variables X,
) ) G, and H, and the parameters o, f,, yand & of
L1 Dynamics Equations the production system have the following meaning:
Fore=0,1,2,.., T-1, W, = the number of people employed in month
£
Lei =Bl + 5X+ 60, (1 I, = the hours stored in inventory at the end of
month .
W= W+ H, 2)
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X, = the regular tme production hours
scheduled in month ¢

(), = the overtime production hours schedujed
in month ¢,

H, = the number of employees hired at the end
of month ¢ for work in month (r+1};

o, = the fraction of employees employed in
month ¢ that are retained in the month (#+1), the
survival coefficient,

B, = the fraction of the total of the hours stored
in inventory at the end of menth ¢ which is stored
in inventory at the end of month (++1), the storage
coefficient;

3% = the fraction of regular time production

hours scheduled in month t which are stored in

inventoery in month (#4+1);

&, = the fraction of overtime production hours
scheduled in month ¢ which are stored in inventory
in month (z+1).

The coefficients ¢ (survival), 5 (storage), & and ¥
have an aftractive economic interpretation and are
quite helpful in the planning process. They are
used 1n the model as exogenous parameters
characterizing the production system bui their role
in the process of decision-making is, clearly,
important since they (their values) determine the
system evolution. Nete also that in (2) ¢« W, is
equal to the number of employees employed in
month 7 that are retained in month (&+1), and
therefore (1 - o)W, is equal to the number of
employees fired in month (#+1). Furthermore, it is

production sald in month ¢ is equal to (7-F}, + {1~
¥iX, + (1-8)0,.

1.2 Constraints

X—-A, W+ U =0 {4)

O, ~Ax W, +5 =0 (5)

fi—B,=20, r=01,2,.,m-1, Gy
where

{/, = the number of idle time reguiar production
hours in month 73

S, =the number of idle
production hours in month £,

B, = the minimum number of hours to be stored
mn inventory in month #;

A, = the maximum number of regular time
hours to be worked per employee per month;

Aj, = the maximum number of overtime hours
to be worked per employee per month.

time  overtime

Clearly from their meaning all the state and
decision variables as well as the parameters

introduced above are non-negative so that

[{,X;,OI.WNH;‘UM S{: Bw AH’ AZ{Z(L
r=0,1,2,.,m-L (7

The restrictions (6) on the production system
dynamics are mixed constraints imposed on the
state and decision variables for every time period r.
The number U, of idie time regular production
hours in month ¢ , the number of idle time S,
overtime production hours in month ¢ and the
minimum number B, of hours to be stored in
inventory in month { are assumed to be exogenous
parameters in the model.

1.3 Boundary Conditions

Wy=4A; 20 (&)
I =4; 20 &)
Wr=A4A; 20 (10)
Ir =A4,20, (in

where
Aj; = the initial employment level;
A4 = the initial inventory level;
As = the desired number of employees in month
T (the last month of the planning horizon);
Ag = the desired inventory level at the end of
month 7T}

The states W, and J,; are called initial states, and
the states Wy and [ are final (terminal) states.

B ASSEIRDEIOIIS oo o e

The dynamic model (1}-(11) described above is

introduced under the following assumptions. In any
ORI - D

o All regular time employees work overtime.

o Only existing regular time employees work
overtime.

2 All employees work the same number of
regular time hours, up to the limit 4,,.

= All employees work the same aumber of
overtime hours, up to the limit A,

2. POSITIVE LINEAR SYSTEMS

The dynamic equations {1)-(2) can be rewritten in
the matrix form

HI

IWIH o, 0 E/Vt ! 0 Y
It+1 0 :61 ‘[!+l Y }’f 55
f=0,1,2,..., T-1, (12}
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or, respectively,

x{ 1)y = A x{0) + B ult},
r=0,1,2,..,7-1, (13)

where the vector of state variables x(f), the
decision (control) vector u(z), the system matrix
A(t) and the control matrix B(r) are given by the
corresponding vectors and matrices i (12). Note
that ail of the entries of u(¢), A() and B{r) are
greater than or equal to zero for any time period ¢,
Vectors and matrices with nonnegative entries are
called nonnegative vectors and matrices, see
Berman and Plemmons [1994]. They are denoted
as u(ty = 0 and A() = 0, respectively. Since the
system matrix A(r) = 0, the control matrix B(r) = 0
and the decision vector u(r) = 0 are nonnegative for
any ¢, it can be seen from (12) (and (13)) that the
state vector x{7) 15 a noanegative vector whenever
the initial siate

.’C](O) _ W’) _ A?

= = 20 (14
x7(0) 1, Ay

(M=

is nonnegative. Thus, nonnegativity (positivity) is
an intrinsic property of the system (12), that is
(13}, Such systems are called positive systems, see,
for example, Luenberger [1979]. It can be proved
that the conditions #(8) = 0, A(f)=20and B(t} =20
are necessary and sufficient for the state trajectory

A-x{0) )10 .be.gggn.@g.at.i.ye..f.()r..agy..z._..Ngte.also. thato

the nonnegativity of the decision variables u/t) =
H, wuf) = X, and wy{f) = O, guarantees the
nonnegativity of the state variables in the mixed

Cfiunctional CoRStEAnE (4)-(5) Note T that the final

(terminal) state

x (1] [Wr] [4s

D= | T e 1T 46

is non-negative too.

The (dynamic) system theory for positive systems
has been rapidly developing during the last decade
although one of the cornerstones of this theory is
the famous Frobenius-Perron theorem  for
nonnegative matrices known for over 80 years, see
Berman and Plemmoas {1994] or Luenberger
[1979%. The Frobenius-Perron theorem plays a
fundamental role in mathematical econoics,
input-output  analysis,  economic  dynarics,
probability thecry and mathematical statistics, and
any linear theory involving positivity.

The dynamic model for capacity planning (1)-(11)
can be built-in in decision support systems. It is
somewhat easier for simulation and decision-
making than the static models. On the other hand,
introducing a relevant objective {cost) fuaction we
can coasider the related optimal control problem
and determine the optimal decision sequences and
the corresponding optimal state trajectory over the
planning horizon 7. But becaunse of the restrictions
{8)-(11) the related problem will be a two-point
beundary-value problem aad as it is well known a
solution to such a problems might not exist.

The optimal control approach to the theory of the
firm is motivated by three issues : {i) the need for
policies, (it} the contribution of deductive analysis,
and (iil) the need to incorporate time., Van Hilton
at al {19931 have well exposed the state-of-the art
of this area but they discuss only continuous-time
systems  and  exploit  Pontryagin - Maximum
Principle developed for such systems. They do not
congider positive systems as well as discrete-time
models. Discrete-time meodels are somewhat more
suitable to describe the firm’s dynamics.
Moreover, the model (1)-(11) not only represents a
discrete-time positive system but it confains a
number of important parameters not included in the
dynamic models described in the literature. At the
same time, the first guestion that arises when
solving any two-boundary optimal control problem
is whether a solutions exists. This question is
closely related to the controllability properties of
the system. Unfortunately not much attention to

date is paid to controlfability “of the dynamic

maodels of the firm as it is evident from Luenberger
11979} and van Hilton ar al [1993]. In the next

section. we study. controllability. properties of the . . ..

discrete-time positive model (12}, e, {13), with
non-negative decision sequence & (1) = 8.

3. REACHABILITY AND
CONTROLLABILITY OF POSITIVE
SYSTEMS

31 Some Definitions

The definitions of reachability, null-contreilability
and controllability introduced by Rumchev and
James [1989] for stationary (time-invariant)
positive systems are extended below for non-
stationary (time-variant) positive systems.

The system (i3) (and the non-negative pair
{(ALB(H) 2 0) 15 said to be

{a) reachable {or controilable-from-the origin) if
for any non-negative state x € R," , x = 0,
and some finite ¢ there exists a4 non-negative



control sequence {z (5), 5= 0,1,, ... ... , =1}
that transters the system from the origin into
the state x = x(t);

(by null-controllable (or  controllable-to-the
origin} if for any non-negative state x ¢ 9H."
and some finite ¢ there eXISts a noa-negative
control sequence {u (5), s=0,1,, ... .., , =1}
that transfers the system from the state x = x
{0} into the origin;

{c) controllable if for any non-pegative pair {x,,
x} x e MN,” and some finite ¢ there exists a
non-negative control sequence {m {5}, § =
0.i., ... ..., =i} that transfers the system
from the state x, = x(() into the state x = x {1).

Rumchev and James [1989] have proved that the
discrete-time positive finear system is controflable
it and only if it is reachable and null-controllable.
Thus contrellability implies both reachability and
null-controllability and, vice versa, reachability
and null-controliabifity together imply
controllabifity.  Reachability, null-controllability
and controllability are general properties of the
system (but not of its environment). They express
the abiliry of the system to move in space, this
being the non-negative orthant for the class of
positive systems under consideration.

The t-step reachability matrix of the pair A1), B(5)
{and the system (13)) is defined, see Somtag
[1998], as

(B(-1) A(-DB(2) A1) A-2)B(-3) .« ..

The reachability matrix of the system {13) is
clearly a non-negative matrix since A{I) 2 0 and
B(1)) 2 0 for any integer £

For stationary system, i.e, A() = A and B(f) = B(H
are constant real matrices, the #-step reachability
matrix becomes

R, (A4, B)=[B AB ... A"' B {10}

A vector (column, row} with exactly one non-zero
entry is called monomial, see Berman and
Plemmons [1994]. The product of a non-singular
diagonal matrix and a permutation matrix is call a
monomial mairix. Any monomial matrix consists
of linearly independent monomial columns. A
monomial vector is calied i-menomial if the non-
zero entry is in the ith position.

3.2 Criteria for Stationary Systems

The following criteria for
reachability and
stationary discrete-time positive linear systems can

be found in Caccetta and Rumchev {1999],

identifying  the

The nor-negative pair (4, By =20 is

{1 reachable if and only if the n-step
reachability matrix R, (4, B) contains an mxn
monomial submatrix;

(it} null-contreliable if and only if 4 is a nil-
potent matrix;

(i1} controilable (in finite time) if and only if it is
reachable and null-controllable.
Reachability and controllability are generic
properties of the pair (A, By = § (and the positive
system). These properties depend on the structure
of the pair {4, B) and are not affected by the
values of the entries of A and B, that is of the

parameters of the positive system.

The analysis of reachability and controllability
properties of positive linear systems {even time-
invariant) with additional finear constraints on state
and decision variables is more complicated. It is
still an open problem.

33 Mon-Stationary Systems: the Capacity
Planning Model

There are no resulis in the lterature on reachability
and controllability of non-stationary positive lingar
systems even without additional linear constraints

systems is more difficult to study. Therefore, to get
some insight into the problem we consider in this
subsection the simplified (without the restrictions
(4)-(6)) capacity planning model presented in
Section 1, that is the model (12) with the non-
negativity restrictions. The system and control
matrices in {12) are, respectively,

A l:ar O] o B [i_ 0 O]
ty= , an = .
0 B 0 vy, 6

(7

The state of the model (13) (and (12)) at time ¢ can
be represented as

x{f) = A(t-1) A(-2) A(3)... AR)A(DAD) x(0)
+ A, B uy (18)
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where w, = [¢’ (=10, . u {1 o’ (O] is the
expanded decision vector and * *  denotes the
transposed vector. For reachability x(0) = 0, and
the expression (18) becomes

x(i) =R, (A, B u, . (193

Since the expanded decision vector &, 2 4 and the
reachability matrix R, (A, By = § are non-
negative the non-negative quadrant {in the case
under consideration) can be spanned if and only if
R, (Aln, B(nN) contains two linearly independent
maonomial columns. Then, it readily follows from
the structure of (15) and the form of B(f) given by
(17) that matrix R, {4{n, BN contains two
linearly independent monomial columns (1, 0) and
{G, 1, ) {or (0, &), and any nron-negative state
can represented as

x(y=ce; +oey , with ¢ 20 (20)
where e, and ¢, are the basis unit vectors, and ¢
and ¢, are some (non-negative) constants. In other
words, any nop-negative state can be reached from
the origin by a suitably chosen non-negative
decision sequence in finite time - the positive
systern (12) is reachable. As a matter of fact any
state of the model (12) can be reached from the
origin in at most two sieps so that the reachabilicy
index (see, for example, Sontag [1998]) of the pair
Aln), B(t) z 0 15 equal to two,

For null-controliability x(i} = 0 and x, = x(O}'%‘-“ﬁ” o

s0 that the equation {18} becomes

Ga= A1 AZY A ADADAOY x;

+ R, A, B 1, . (22)
Rumchev and James [1989] have shown that for
positive systems the decision sequence does not
contribute to speed up the system to the origin so
that 1, = 0, and hence the equation {22) can be
reduced to

0=A0-DAED A . ADADAO x, (23
or
& = D) xo, f=0,1,., 71 (24)

whera

1—1 c
on=[] 4w - % O;_

with
k=0 o t
1 —1
OflE:HO.’k<lanc! ,B_f‘mHﬁk<§ (25}
k=) ¢=(}

is the fundamental matrix of the systern (12). Let
now &, = {0 for some £ = 5, and S, = 0 for some r
= 5y and let 5 = max{s, s;}. Then the matrix
D(s+1) = § and the eguation (24) is satistied for
any non-negative state x, and any ¢ > s which
implies the null-ceatrollability (in finite time) of
the non-stationary positive system (12) is, and
since the system is reachable it is alse {(finite time)
controlfable. But having o, = 0 or § = 0 for some
t means that all the employees are fired or,
respectively, no production is stored in inveatary at
the end of the time-period ¢ Such a situation,
clearly, does not seem quite realistic,

Let at least cne of the fractions «, and J be strictly
positive for the whole planning horizon. Then the
fundamental matrix D) =0 for r = 1,.... T and the
positive system (12) is not null-controllabie in
finite time. If no control is exersized, the trajctory
(free motion) of the system from any initial state x,
z Obutx, =8 1s given by

x(5) = B} x,. (26)

bnlca. L=.max { Hopp b= ﬂ,%,.T-‘. } It {'““Z}di}.}’

follows from (3) that p < 1. Consider now the free
motion

of the time-invariant system

y+D = Py(y with P =diaglp, p} {28}
from the same initial state x,. Clearly,

¥ —pe0 a§t ~poo {29
since p < 1. On the other hand, since A(1) < P for
any ¢ 2 0 the rajectory (26) of the model {12) is
dominated by the time-invariant positive system
trajectory (27),

=sx(t)=sy(ny foranydf (3
Then it readily follows from {2%) and (30} that

(31

X(#) —roo u§ f oo,
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s0 the free motion of the positive systems (12)
converges to the origin agsymptotically. This means
that the posiuve system (12} is  weakly
{asymptotically) null-controllable, see Caccetta
and Rumchev [1999]. Reachability and weak null-
controllability together imply weak controllability
of the positive system, see again Caccetta and
Rumchev [1999]. Thus if at least one of the
fractionser , and f, be strictly positive for the whole
planning horizon the positive system (12} is weakly
controllable. This result is derived for large T and
without taking into account the restriction (4)-(6)
imposed on the state and decision variables. A
study of reachability and controliability properties
of the non-stationary model (12} with the linear
constraints (4)-(0) is a subject of a related paper.

4, CONCLUSIONS

[n this paper a new discrete-time dynamic model of
capacity planning is developed. The model is
motivated not only by the need for policies but also
by the need to incorporate time and open the way
for deductive analysis. Some inferesting new
characterizations of production systems important
for aims of planning and control appear in the
model. The model can be buili-in in decision
support systems. It is somewhat easier for
simulation and decision making than the static
models.

The model presented in this paper belongs to the
class of non-stationary discrete-time positive linear
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- properties-of thne-1nvariant-positive Hnear-systems-

have been obtained quite recently. Reachability
and controilability criteria for non-stationary (tine-
variant} positive systems even without side linear
constraints are not known to date. We have studied
the controllability properties of the capacity
planning model (without the side linear constraints)
and obtain interesting results. It turns out that the
model is controflable in short term in some not
quite  realistic  situations but i is  weakly
controllable in long term.

Introducing relevant objective functions we can
censider the related optimal control problems and
determine the optimal decision sequences and the
corresponding state trajectories. We study such
optimal control problems as well as the
reachability properties of the model with the side
finear constraints in related papers.
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